Neurogenesis is enhanced by stroke in multiple new stem cell niches along the ventricular system at sites of high BBB permeability
نویسندگان
چکیده
Previous studies have established the subventricular (SVZ) and subgranular (SGZ) zones as sites of neurogenesis in the adult forebrain (Doetsch et al., 1999a; Doetsch, 2003a). Work from our laboratory further indicated that midline structures known as circumventricular organs (CVOs) also serve as adult neural stem cell (NSC) niches (Bennett et al., 2009, 2010). In the quiescent rat brain, NSC proliferation remains low in all of these sites. Therefore, we recently examined whether ischemic stroke injury (MCAO) or sustained intraventricular infusion of the mitogen bFGF could trigger an up-regulation in NSC proliferation, inducing neurogenesis and gliogenesis. Our data show that both stroke and bFGF induce a dramatic and long-lasting (14day) rise in the proliferation (BrdU+) of nestin+Sox2+GFAP+ NSCs capable of differentiating into Olig2+ glial progenitors, GFAP+nestin-astrocyte progenitors and Dcx+ neurons in the SVZ and CVOs. Moreover, because of the upsurge in NSC number, it was possible to detect for the first time several novel stem cell niches along the third (3V) and fourth (4V) ventricles. Importantly, a common feature of all brain niches was a rich vasculature with a blood-brain-barrier (BBB) that was highly permeable to systemically injected sodium fluorescein. These data indicate that stem cell niches are more extensive than once believed and exist at multiple sites along the entire ventricular system, consistent with the potential for widespread neurogenesis and gliogenesis in the adult brain, particularly after injury. We further suggest that because of their leaky BBB, stem cell niches are well-positioned to respond to systemic injury-related cues which may be important for stem-cell mediated brain repair.
منابع مشابه
P 150: The Role of Blood Brain Barrier Restoration in the Multiple Sclerosis
Blood Brain Barrier (BBB) is a specialized non fenestrate barrier that formation by the endothelial cells and controls the transportation of the cells and molecules in to the brain. Reducing in function of BBB is one of disruptions in neurological diseases like multiple sclerosis. Endothelial progenitor cell (EPC) help to the BBB to control the diapedesis of inflammatory cells & molecules in to...
متن کاملClassic and novel stem cell niches in brain homeostasis and repair
Neural stem cells (NSCs) critical for the continued production of new neurons and glia are sequestered in distinct areas of the brain called stem cell niches. Until recently, only two forebrain sites, the subventricular zone (SVZ) of the anterolateral ventricle and the subgranular zone (SGZ) of the hippocampus, have been recognized adult stem cell niches (Alvarez-Buylla and Lim, 2004; Doetsch e...
متن کاملQuantification of blood-brain-barrier permeability dysregulation and inflammatory activity in MS lesions by dynamic-contrast enhanced MR imaging
Objective: Measurement of blood-brain permeability dysfunction in active and chronic MS lesions with T1-weighted dynamic contrast-enhanced MRI to show variation in inflammatory activity Background: blood-brain-barrier perfusion characterization impaired in MS as some studies have shown recently buta comparison between perfusion parameters in contrast-enhanced and non-enhanced lesions not have ...
متن کاملPaving the Way Toward Complex Blood-Brain Barrier Models Using Pluripotent Stem Cells.
A tissue with great need to be modeled in vitro is the blood-brain barrier (BBB). The BBB is a tight barrier that covers all blood vessels in the brain and separates the brain microenvironment from the blood system. It consists of three cell types [neurovascular unit (NVU)] that contribute to the unique tightness and selective permeability of the BBB and has been shown to be disrupted in many d...
متن کاملIntensification of brain injury and blood-brain barrier permeability by short-term hypertension in experimental model of brain ischemia/reperfusion
Introduction: Arterial hypertension is one of the causes of stroke, and as one of the vasculotoxic conditions intensifies ischemic stroke complications. The aim of the present study was to analyze the effects of short-term cerebral hypertension on ischemia/reperfusion injury and pathogenesis of ischemic stroke. Methods: The experiments were performed on three groups of rats (N=36) Sham, cont...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neurobiology of Disease
دوره 74 شماره
صفحات -
تاریخ انتشار 2015